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Abstract— The compliance of muscles with external forces
and the structural stability given by biarticular muscles are
important features of animals to realize dynamic whole body
motions such as running and hopping in various environments.
For this reason, we have been studying an electromagnetic
linear actuator. This actuator can emulate the behavior of
a human muscle such as the spring-damper characteristics
by quick control of the output force (i.e. impedance control)
and it is expected to be used as an artificial muscle. In this
paper, we develop a monopedal robot possessing bi- and mono-
articular muscles implemented by linear actuators. Thanks to
the biarticular muscle, the bouncing direction of the robot can
be controlled by changing the stiffness ellipse at the endpoint
(i.e. foot) of the robot. We confirm that the bouncing direction
of the robot can be controlled and hopping can be achieved by
changing the stiffness ellipse.

I. INTRODUCTION

Animals have great mobility, as they can move in various

environments by performing whole body motions while

coping with various disturbances such as running on a rough

terrain or hopping over a ditch. There are two important

mechanisms to realize such flexible motions. One is the

compliance of muscles actuating the skeleton, and the other

is the musculoskeletal structure itself [1]. The compliance

of muscles enables animals to respond to external forces

flexibly. The structure contributes to the stability of the

whole body motion. For example, a biarticular muscle is

a muscle which actuates two adjacent joints at the same

time, modifying the effect of external forces on the whole

body by changing its stiffness [2]. That is, the compliance

characteristics at the end effector can be flexibly changed

by utilizing a biarticular muscle. By responding to external

forces with the proper stiffness at the end effector, animals

can react to various disturbances and can make use of kinetic

energy effectively.

In relation with the above properties, legged robots with

artificial muscles including a biarticular muscle and their

control mechanisms have been studied [3], [4]. Pneumatic

actuators are widely used as artificial muscles for muscu-

loskeletal robots due to their light weight and compliance

properties induced by their physical character [5], [6]. For
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example, a legged “Athlete Robot” driven by pneumatic

actuators can change the direction of the major axis of the

stiffness ellipse [7]. Although the control of the bouncing

direction can be achieved by presetting the stiffness ellipse,

a quick change in stiffness during the robot’s movement is

difficult due to the slow response of the pneumatic actuators.

Series elastic actuators (SEAs) are also used as variable

compliance actuator for robots [8]. The structure of SEAs is

simple and easy to implement in robots, but their response is

also slow because the SEAs use a ball screw to actuate their

mover. From the view point of compliance control, electric

motors are suitable since they can change their output forces

(or torques) quickly and arbitrarily according to the control

inputs. The robots’ easy and precise response to the external

disturbances can be controlled by emitting an adequate force

(or torque). Electric direct drive rotary motors are widely

used to realize joints with compliant property, but there are

two properties unfit for constructing a musculoskeletal robot.

In order to implement a biarticular muscle, it is necessary to

employ a complex mechanical structure such as a wired drive

system [9] or a planetary gear [10]. Furthermore, external

forces applied at the end effector directly act on the mover

of the actuators, since they are a part of the skeletal system

supporting its own body. This may cause them to break down

especially when a strong impulsive force is generated by an

accidental collision.

In this research, we use electromagnetic linear actuators

as artificial muscles [11], because it is easy to implement

multi-articular muscles. Also, they are not directly exposed to

impulsive force since the skeletal system receives such forces

and the actuators are used only for emitting output forces.

We develop a monopedal (one-legged) robot which has bi-

and mono-articular muscles implemented by electromagnetic

linear actuators. The stiffness ellipse at the endpoint (foot) of

the robot is controllable thanks to the biarticular muscle, and

the robot can control its bouncing direction when it touches

down to the ground. We employ a simple feedback control

rule to change the stiffness ellipse at the end effector, i.e.

foot, to make the robot hop repeatedly. Experimental results

show that by using our method the robot can repeat hopping.

II. THE LEG MODEL WITH BIARTICULAR

MUSCLES DRIVEN BY COMPLIANT ACTUATORS

In this section, we explain the leg model with biarticular

muscles used in this research and how the stiffness ellipse

at the foot changes according to the compliance of each

actuator. We assume the monopedal robot is driven by elec-



Fig. 1. Electromagnetic linear actuator

tromagnetic linear actuators, which can behave as a spring-

damper system when it is controlled by a PD control thanks

to its quick response. The characteristics of an emulated

spring-damper, i.e., the natural length, elastic coefficient

and viscosity coefficient, can be changed arbitrarily within

the hardware limitations, according to the change of gain

parameters of the PD controller.

A. Electromagnetic Linear Actuator

The electromagnetic linear actuator which we developed is

a direct drive 3-phase synchronous linear motor [11]. There

are 2 types of sensors. One measures the position of the

mover (Inductcoder, Murata Machinery, Ltd.) and the other

measures the current flow in each coil (PS-FBD 2/1 Module,

dSPACE GmbH). By using these sensory inputs, it is able

to calculate the target coil currents to generate an arbitrary

given force for the current mover position. Fig. 1 shows

our electromagnetic linear actuator (body length: 180mm,

diameter: 20mm, stroke: 40mm and weight: 0.17kg) used

in our experiment. The thrust of this actuator is 5.7N when

the effective current is 1A. The physical properties of the

actuator used in later simulations (Section IV) is set to those

values.

B. Model of the Biological Muscle

Each joint of an animal is usually driven by an antagonistic

pair of muscles (flexor and extensor muscles) because the

biological muscles can only generate contractile force. Its

impedance characteristics is determined by the balance of

forces produced by these two muscles. A simplified model

of the biological muscle is shown in Fig. 2 (left). The

kinetic property of the simplified muscle model (i.e. when

the contractile velocity is 0) can be represented as:

Fm = u− k(u)l, (1)

where Fm, u, k(u) and l are the total force generated by

the muscle, the force generated by contractile element, the

elastic coefficient of the muscle and the contractile length,

respectively [12] (It is assumed that the elastic coefficient

k(u) is proportional to the contractile force u: k(u) = k0u
with a certain constant k0). Note that the linear actuator

can produce both contractile and extensive force and an

antagonistic pair of muscles can be emulated and thus

replaced by one actuator (See Fig. 2 (right)).

C. The Stiffness Ellipse at the Foot

A simplified model of the human leg with 3 antagonistic

pairs of muscles is shown in Fig. 3. This model consists

of 3 links with 2 joints and assumes the point foot. Mn

denotes an antagonistic pair of muscles, where fn and en
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Fig. 2. Joint and muscle mechanisms
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are the flexor and extensor muscles, respectively. M1 and

M2 are the monoarticular muscles at the hip and knee joint,

respectively. M3 is the biarticular muscles which is used to

constrain the motion of the two joints. For simplicity, the

moment arm of each joint has the same length r, and the

lengths of both links (thigh and shank) are L. The elastic

coefficient of fn is assumed to be equal to that of en. The

origin is set to the hip joint position. The potential energy

∆Ep at the foot is calculated as:

∆Ep =
[

∆x ∆y
]

K
[

∆x ∆y
]T

(2)

where ∆x and ∆y are the horizontal and vertical axis com-

ponents of the small displacement from the target position

(equilibrium point) to the current endpoint, respectively. K

is the stiffness matrix in Cartesian space formed as:

K =

[

C11 C12

C21 C22

]−1

(3)

where each element of compliance Cij is defined as:

C11 = −α2ca − 2αγcb − γ2cc
C12 = C21 = αβca + (αδ + βγ)cb + γδcc
C22 = −β2ca − 2βδcb − δ2cc







(4)

Variables α, β, γ and δ are defined as:

α = −L{cos θ1 + cos(θ1 − θ2)}
β = L{sin θ1 + sin(θ1 − θ2)}
γ = −L cos(θ1 − θ2)
δ = L sin(θ1 − θ2)















(5)
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The compliance ca, cb and cc are defined as:

ca = c1(c2+c3)
c1+c2+c3

cb = − c1c2
c1+c2+c3

cc =
c2(c1+c3)
c1+c2+c3











(6)

cn = −
1

kn(un)r2
(n = 1, 2, 3) (7)

Variables θ1 and θ2 are the angles of the hip and the

knee joint, respectively. un, cn and kn(un) are the sum

of the antagonistic pair of muscles’ contractile force, the

compliance of the antagonistic pair of muscles, and the

elastic coefficient of Mn, respectively.

By singular value decomposition, the stiffness matrix K

is transformed as:

K =
[

ν1 ν2

]

[

λ1 0
0 λ2

]

[

ν1 ν2

]T
(8)

where λ{1,2} and ν{1,2} are eigenvalues and eigenvectors. K

determines the characteristics of its corresponding stiffness

ellipse (See Fig. 4) i.e., the volume (πλ1λ2), the shape

(λ1/λ2), and the orientation (θe = arg(ν1)). By changing

these characteristics, the response of the robot against exter-

nal forces can be changed.

III. CONTROL METHOD FOR THE MONOPEDAL

ROBOT WITH A BIARTICULAR MUSCLE

In this section, we propose a control method based on

changing the orientation of the stiffness ellipse. The robot can

control its bouncing direction and its leg angle by adjusting

the stiffness ellipse properly, depending on the angle of the

leg when the robot touches down. In the simulation, the

hopping motion of the robot controlled by our method is

shown.

A. Adjustment of the Characteristics of the Stiffness Ellipse

The characteristics of the stiffness ellipse are determined

from the coefficient of each muscle. In this analysis, the

posture of the robot when it touches down is assumed to

be fixed, and θ1 and θ2 are set to be 40deg and 80deg,

respectively. The initial values of the elastic coefficients of

all muscles are 600 N/m.

Fig. 5(a) shows the result when changing k1(u1) (k2(u2)
and k3(u3) are constant values in this figure). The stiffness

ellipse rotates in a clockwise direction as k1(u1) increases,

and vice versa. Fig. 5(b) and 5(c) shows cases where k2(u2)
and k3(u3) change. The stiffness ellipse does not rotate, but

the length of the major axis is monotonically increased, as

in k2(u2). k3(u3) has an opposite effect against k1(u1).
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B. Control Method

The major and minor axes of the stiffness ellipse represent

the directions of the large and small stiffness respectively.

There are simple relationships: 1) the orientation of the

stiffness ellipse is determined by the ratio between k1(u1)
and k3(u3); 2) the length of the major axis is determined by

changing k2(u2). These relationships can be used to control

the bouncing direction and angle of the leg of the monopedal

robot.

Bouncing direction control (BDC)

When the major axis of the stiffness ellipse tilts forward

(i.e. k1(u1) is larger than k3(u3)), the robot is expected to

jump forward, because the foot tends to move backward, and

the robot tends to lean forward when it touches down. On

the contrary, when the major axis of the stiffness ellipse tilts

backward (i.e. k1(u1) is smaller than k3(u3)), the robot is

expected to jump backward. By changing k1(u1) and k3(u3)
before it touches down, the monopedal robot can control its

bouncing direction.

Leg angle control (LAC)

The leg angle is defined by the angle between the vertical

direction and the line connecting the hip joint and foot as

shown in Fig. 6. We assume that the center of gravity for

the robot is at the hip joint. If the leg angle is not within

a certain range, the robot goes down. However, the robot

can change k1(u1) and k3(u3) (BDC) depending on the leg

angle to maintain the proper leg angle. Details are described

in the latter part of this paper.
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Providing hopping energy

Since k2(u2) does not change the bouncing direction, it

is used to supply the energy lost during each hopping and

make the robot hop repeatedly. Fig. 7 shows the variation

of k2(u2). k2(u2) was set to be small during bending (kc)

and large during stretching the knee (km) in oder to maintain

stable hopping.

C. Simulation of Hopping by the Monopedal Robot

The CAD model of the monopedal robot is shown in Fig.

8(a). The height from the foot to the hip is about 210mm

(θ1 =20deg and θ2 =40deg) and the weight of whole robot

is about 1.7kg (including the weight of the body 0.5kg). This

robot model has a simulated touch sensor at the foot to detect

the ground at touchdown (In the real robot, we implemented

a touch sensor (FSR402, Interlink Electronics Inc.)). Three

antagonistic pairs of muscles at the femoral area are replaced

by four electromagnetic linear actuators. The placement of

the actuators is shown in Fig. 8(b). Since the maximum

isometric force of M2 is nearly twice as large as M1 and

M3 in the case of the human leg [13], [14], two actuators

(A2,1 and A2,2) implemented at the front of the thigh act as

a single muscle (M2), controlled by the same control signal.

One out of two actuators (A1) implemented at the back of

the thigh operates as M1, while the other (A3) operates as

M3. These actuators are implemented around the hip joint

to maintain the center of gravity of the robot around the hip.

The structure of joints is shown in Fig. 9. Each connection

between a link and an actuator is made up of two linear

sliders to maintain a constant moment arm. Since the current

actuator cannot output enough thrust to jump under an

environment with gravity acceleration, we employ a counter

weight (See Fig. 15.), so that the effect of the gravity force

is reduced. This equipment also makes the robot stable in

radial and yaw directions. We set the gravity acceleration to

g/3[m/s2] (g=9.81m/s2) because the experimental equipment

reduces the effect of the gravity force. The movement of the

trunk is restricted to translation in the horizontal and vertical

directions (sagittal plain), in order to avoid the complexity of

three-dimensional movements, i.e. the trunk does not rotate.

In the simulation, the equations expressing the motions of the

robot are derived and numerically calculated using the MAT-
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LAB/Simulink and SimMechanics toolbox [15]. Numerical

integration was performed with a 4th order Runge�Kutta

method. The simulation model considering the mass and

inertia of the robot is shown in Fig. 8(c). The actual actuator

has a friction different from that in the simulation, which was

set by modifying the friction coefficient, i.e. the viscosity

coefficient of the actuator model, considered to be 0.1Ns/m.

The ground reaction force in the vertical direction generated

between the foot and the floor was approximated by a

nonlinear spring-damper model, and that in the horizontal

direction is calculated as dynamic friction [16], [17].

Elastic coefficients and the bouncing direction

The bouncing direction when the robot with an initial

posture falls down from its initial position is investigated.

The elastic coefficients of the actuators, the initial position

and the joint angles of the robot are shown in Table I.

The bouncing direction is defined by the angle between the

vertical direction and the moving direction of the hip joint

as shown in Fig. 10. The simulation results are shown in

Fig. 11(a). When the k1(u1) is larger than k3(u3), the robot

tends to jump forward and vice versa. The elastic coefficients

of k1(u1) and k3(u3) determine the bouncing direction and

their relationship is almost linear. Therefore, the control rule

for the bouncing direction using the stiffness control of the

linear actuator is relatively simple. We also confirmed the

following facts, shown in Fig. 11(a), about the robot without

a biarticular muscle. Other simulation conditions are same.

The result shows that this cannot jump backward, because the

major axis of the stiffness ellipse can not tilted backward in

the absence of a biarticular muscle. Thus, we can confirm that

the biarticular muscle is important to determine the control

of the bouncing direction of the robot.
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Leg angle control to prevent the robot falling down

During the hopping motion, the target length of each

actuator is fixed. That is, the target leg angle of the robot is

fixed. However, the leg angle of the robot changes because of

the forces generated at touchdown or the take-off. To correct

these errors we designed a simple control method of the

leg angle based on the modification of the characteristics of

the stiffness ellipse at touchdown. When the leg angle of the

robot tilts forward (backward), the orientation of the stiffness

ellipse is tilted backward (forward). With this control rule, it

is expected that the leg angle of the robot can be modified.

The conditions of the simulation are shown in Table II Fig.

12 show the relationships between θtd and θto. θtd and θto
are the leg angles at touchdown and take-off, respectively.

The initial posture of the robot is set to be tilted forward

(Fig. 12(a)) or backward (Fig. 12(b)) with a certain height,

and after that the robot falls down. This procedure (trial) is

repeated several times. Since the initial posture of the robot

varies by each trial and the angle of the leg changes during

TABLE I

SIMULATION CONDITIONS

Elastic coefficients k1(u1) 200-800N/m (step size 50N/m)
of actuators k3(u3) 200-800N/m (step size 50N/m)

k2(u2) 500N/m (constant)

Initial position x axis 0m
of the hip joint y axis 0.25m

Initial joint angle Hip joint θ1 20deg
of the robot Knee jointθ1 40deg

Floor y axis 0m
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the robot is falling down, it is not necessarily true that the

leg angle at touchdown θtd is always same. These figures

show point diagrams of observed data whose horizontal and

vertical axes show θtd and θto − θtd. When θtd tilts forward

with the orientation of the stiffness ellipse set to backward,

θto rotates in the backward direction; conversely, if θtd is

tilted backward and the orientation of the stiffness ellipse is

set to forward, then θto rotates in the forward direction. As

the result, the angle of the leg tend to stay in a certain range.

Hopping of the monopedal robot with feedback control

In this simulation, the ground stiffness is changed accord-

ing to the location at touchdown; as a result, the environ-

ment includes unexpected disturbances. It is we investigated

whether the simple feedback control based on LAC can

cope with such disturbances. The stiffness ellipse is changed

TABLE II

SIMULATION CONDITIONS

The orientation of k1(u1) 200N/m
the stiffness ellipse k3(u3) 600N/m
tilts backward k2(u2) kc=200N/m, km=300N/m

The orientation of k1(u1) 400N/m
the stiffness ellipse k3(u3) 200N/m
tilts forward k2(u2) kc=200N/m, km=300N/m

Floor y axis 0m
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according to the leg angle at touchdown. Fig. 13 shows the

flowchart of the feedback control. Not that the leg angle is

calculated according to position data of each actuator. θs is

the threshold value (θs > 0). The conditions of the simulation

are shown in Table III.

14(a) shows the maximum hip joint hight in each step.

14(b) shows the result of the hopping without feedback con-

trol (k1(u1) and k3(u3) are constant). There are 3 different

grand conditions (red, green and blue lines). The ground

spring constant is changed depending on the position of

the robot. From these figures, the robot can hop more than

40 steps by the feedback control. These simulation results

indicate our control method works well.

IV. HOPPING OF THE MONOPEDAL ROBOT BY

SIMPLE COMPLIANCE CONTROL

Fig. 15 shows the monopedal robot we developed and

the experimental setup. In these experiments, the actuator

A2,1 is removed and three electromagnetic linear actuators

are implemented on the robot, due to the shortage in the

TABLE III

SIMULATION CONDITIONS

Hopping with feedback control

θtd < −θs k1(u1) 700N/m
k3(u3) 300N/m
k2(u2) kc=100N/m, km=380N/m

−θs < θtd < θs k1(u1) 300N/m
k3(u3) 300N/m
k2(u2) kc=100N/m, km=380N/m

θtd > θs k1(u1) 200N/m
k3(u3) 800N/m
k2(u2) kc=100N/m, km=380N/m

θs 1deg

Hopping without feedback control

k1(u1) 660N/m
k3(u3) 300N/m
k2(u2) kc=100N/m, km=380N/m

Floor y axis 0m

Counter
weight

Pivot

Fig. 15. Experimental setup

output capacity of the power supply. Although the maximum

force applied to the knee joint is smaller, it is sufficient

for investigating the effect of the stiffness ellipse, since this

actuator does not change the direction of the long axis of the

ellipse. The system configuration is shown in Fig. 16. The

digital signal processor (dSPACE GmbH, MicroAutoBox and

RapidPro System) calculates the target thrust of each actuator

and the target current for each coil when generating the target

thrust. The I/O unit outputs the input voltage to the coil of

each actuator. The mover of the actuator is measured by the

built-in linear encoder. Four markers are attached on the hip

joint, the thigh, the knee joint and the foot to measure the

motion of the robot. The position of the makers is measured

by a motion capture system (Motion Analysis Corporation,

MAC3D System).

A. Elastic Coefficients and Bouncing Direction

Bouncing directions are recorded when the robot falls

down from the initial position. The height of the hip joint

of the initial position is about 0.3m. θ1 and θ2 are set about

7deg and 14deg, respectively. Fig. 17 shows the measured

result of the relationship between the elastic coefficient and

the bouncing direction by changing the k1(u1) and k3(u3).
In this figure, we can notice a similar tendency to the one

shown in Fig. 11.
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Fig. 17. Relationship between the elastic coefficients and the bouncing
direction (Measured result)

Leg angle control

The experimental conditions are shown in Table IV Fig.

18 show the relationships between θtd and θto. The initial

posture of the robot is set to be tilt forward (Fig. 18(a)) or

backward (Fig. 18(b)) with a certain height, and the robot

falls down. These figures show point diagrams of observed

data whose horizontal and vertical axes show θtd and θto−θtd
These figures show a similar tendency to that illustrated by

12(a) and (b). Thus, we can say that we were able to prevent

the real robot from falling down by using LAC.

B. Hopping of the real robot with feedback control

We employ the simple feedback control based on LAC

to realize hopping using a real robot. The conditions of the

experiment are shown in Table. V. Fig. 19 shows the part

TABLE IV

EXPERIMENTAL CONDITIONS

The orientation of k1(u1) 50N/m
the stiffness ellipse k3(u3) 300N/m
tilts backward k2(u2) kc=3N/m, km=200N/m

The orientation of k1(u1) 150N/m
the stiffness ellipse k3(u3) 100N/m
tilts forward k2(u2) kc=3N/m, km=320N/m
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Fig. 18. Leg angle control (Measured results)

TABLE V

EXPERIMENTAL CONDITIONS

θtd < −θs k1(u1) 150N/m
k3(u3) 100N/m
k2(u2) kc=3N/m, km=300N/m

−θs < θtd < θs k1(u1) 100N/m
k3(u3) 100N/m
k2(u2) kc=3N/m, km=300N/m

θtd > θs k1(u1) 100N/m
k3(u3) 150N/m
k2(u2) kc=3N/m, km=300N/m

θs 1deg

of the motion sequences of the robot. The robot achieved 11

hopping steps before it falls down. When the stiffness ellipse

does not change according to the leg angle of the robot,

the robot hopped only 6 steps at most in our experiments.

This may be because the robot could not maintain the leg

angle properly to continue hopping. This experimental results

indicate our control method works well. Also, it seems that

jumping in backward direction is more difficult than jumping

in forward direction due to the system’s hardware limitations.

It is important to note that the use of biarticular muscle

reduces the computational cost. Even if there is no biarticular

muscle, output force equivalent to the one generated by the

stiffness ellipse based control can be generated according

to the accurate estimate of the posture of the robot at each

control cycle, but it requires a rapid control cycle, because

the posture changes rapidly. However, in our robot, it can

be controlled by making each actuator to emulate a simple

spring, which basically means that each actuator is controlled

by a simple P control with a fixed target length.

V. CONCLUSION

In this research, we investigated a monopedal robot with

a biarticular muscle. The stiffness ellipse before touchdown

in each step can be set by utilizing the quick response of the

electromagnetic linear actuator.

We confirmed that the robot with a biarticular muscle

jumped forward and backward by adjusting the orientation



Fig. 19. Hopping of the monopedal robot

of the stiffness ellipse. On the contrary, the robot without a

biarticular muscle could not jump backward. We also con-

firmed that the robot with a biarticular muscle can recover its

posture by controlling the bouncing direction. It seems that

biarticular muscles contribute to improving the controllability

and stability of the dynamical whole body motion.

Our monopedal robot hop more steps using our simple

feedback control method which determines the characteris-

tics of the stiffness ellipse. In this method, the orientation of

the stiffness ellipse before touchdown is adjusted according

to a simple rule and the system does not require large

amount of computational power. Nevertheless, it succeeds in

improving the stability and robustness against disturbance.

In this study, the foot, ankle joint and rotation of the body

are not considered. We will confirm the effect of biarticular

muscles in controlling the stiffness ellipse to realize stable

hopping motion in more realistic conditions in the future.

In a wide range of locomotion researches, the running

and hopping motions of animals are explained employing the

Spring Loaded Inverted Pendulum (SLIP) model [18]. This

model uses the point-mass body and spring-like leg, but it

does not explain the compliance characteristics of the leg

using the stiffness ellipse. It seems to be useful to improve

our method using this idea.
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